Math 241 Winter 2023
 Lecture 6

$$
\begin{aligned}
& \text { Consider the triange } A B C \text { below } \\
& \text { 1) verify that } \triangle A B C \text { is a } \\
& \text { right triangle. } \\
& a^{2}+b^{2}=c^{2} \\
& 6^{2}+8^{2}=10^{2} \\
& 36+64=100 \\
& 100=100 \mathrm{~V} \\
& \text { 2) Find its perimeter } \varepsilon \text {, area } \\
& P=a+b+c=6+8+10=24 \text { units } \\
& \text { Area }=\frac{b h}{2}=\frac{8 \cdot 6}{2}=\frac{48}{2}=24 \text { units }^{2} \\
& \text { 3) Find its area using Heron's formula } \\
& S=\frac{p}{2}=\frac{24}{2}=12 \\
& \text { Area }=\sqrt{s(s-a)(s-b)(s-c)} \\
& \text { Area }=\sqrt{12(12-6)(12-8)(12-10)}=\sqrt{12 \cdot 6 \cdot 4 \cdot 2}=\sqrt{576}=\sqrt{24} \\
& \text { 4) Find the measure of angle } A \text {. } \\
& \operatorname{Sin} A=\frac{6}{10}=.6 \Rightarrow A=\operatorname{Sin}^{-1}(.6) \approx 37^{\circ} \\
& \text { Sine inverse" } \\
& \begin{array}{r}
\cos A=\frac{8}{10}=.8 \Rightarrow A=\cos ^{-1}(.8) \approx 37^{\circ} \\
\text { "cosine inverse" }
\end{array} \\
& \begin{array}{r}
\tan A=\frac{6}{8}=\frac{3}{4}=.75 \Rightarrow A=\tan ^{-1}(.75) \approx 3 \\
\\
=\text { tangent inverse" }
\end{array}
\end{aligned}
$$

find area of triangle $A B C$ such that $b=14 \mathrm{in}, C=20 \mathrm{in}$, and $A=38^{\circ}$. Drawing Required.
 we have SAS.

Area $=\frac{1}{2} b c \sin A$

$$
\begin{aligned}
3 & =\frac{1}{2} \cdot 14 \cdot 20 \cdot \sin 38^{\circ} \\
& =86.1926 \ldots . \\
\text { Area } & \approx 86 \mathrm{in}^{2}
\end{aligned}
$$

Solve triangle $A B C$ with $\angle A=40^{\circ}, \angle B=60^{\circ}$, and $a=14 \mathrm{~cm} . \quad A+B+C=180^{\circ}$

$$
\begin{aligned}
& 40^{\circ}+60^{\circ}+C=180^{\circ} \rightarrow C=80^{\circ} \\
& \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \\
& \text { Law of Sines }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sin 40^{\circ}}{14}=\frac{\sin 60^{\circ}}{b} \Rightarrow b \sin 40^{\circ}=14 \sin 60^{\circ} \Rightarrow b=\frac{14 \sin 60^{\circ}}{\sin 40^{\circ}} \\
& \frac{\sin 40^{\circ}}{14}=\frac{\sin 80^{\circ}}{c} \Rightarrow c=\frac{14 \sin 80^{\circ}}{\sin 40^{\circ}} \quad c \approx 21 \mathrm{~cm}
\end{aligned}
$$

Solve $\triangle A B C$ such that $a=4 \mathrm{in}, b=6 \mathrm{in}$, and

$$
C=100^{\circ}
$$

Use Law of Cosines we have SAS

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

$$
\frac{\sin A}{4}=\frac{\sin B}{6}=\frac{\sin 100^{\circ}}{8}
$$

$$
\frac{\sin A}{4}=\frac{\sin 100^{\circ}}{8} \quad 8 \sin A=4 \sin 100^{\circ} \quad \sin A=\frac{4 \sin 100^{\circ}}{8}
$$

$$
\begin{aligned}
\sin A=\frac{\sin 100^{\circ}}{2} \Rightarrow \sin A=.492 \Rightarrow & A=\sin ^{-1}(.492) \\
& A \approx 29^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& A+B+C=180^{\circ} \\
& 29^{\circ}+B+100^{\circ}=180^{\circ} \rightarrow B=51^{\circ}
\end{aligned}
$$

Consider the point $p\left(\begin{array}{c}\left.\frac{\sqrt{6}}{4},-\frac{\sqrt{10}}{4}\right) \text { and angle } \theta>0 \\ y<0\end{array}\right.$ Such that its term

1) Draw angle θ.

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& \left(\frac{\sqrt{6}}{4}\right)^{2}+\left(-\frac{\sqrt{10}}{4}\right)^{2}=\frac{6}{16}+\frac{10}{16}=\frac{16}{16}=1
\end{aligned}
$$

2) Draw its reference triangle.

3) Complete the Chart below

$$
\left.\begin{array}{c}
\sin \theta=-\frac{\sqrt{10}}{4} \quad \csc \theta=-\frac{4}{\sqrt{10}} \\
\cos \theta=\frac{\sqrt{6}}{4} \quad \sec \theta=\frac{4}{\sqrt{6}} \\
\tan \theta=-\frac{\sqrt{15}}{3} \quad \cot \theta=-\frac{3}{\sqrt{15}}
\end{array}\right\} \begin{gathered}
\text { Need to be } \\
\text { rationalized } \\
\frac{\sin \theta}{\cos \theta}=\frac{-\frac{\sqrt{10}}{4}}{\frac{\sqrt{6}}{4}}=-\frac{\sqrt{10}}{\sqrt{6}}=-\frac{\sqrt{2} \sqrt{5}}{\sqrt{2} \sqrt{3}}=-\frac{\sqrt{15}}{3}
\end{gathered}
$$

Convert 40° to radians, Give exact Ans.

$$
\begin{array}{rlrl}
180^{\circ} & =\pi & 40^{\circ} & =\frac{4 \phi \pi}{18 \phi} \\
1^{\circ} & =\frac{\pi}{180} & 40^{\circ}=\frac{2 \pi}{9}
\end{array}
$$

Convert $\frac{3 \pi}{5}$ to degrees.

$$
\frac{3 \pi}{5}=\frac{3\left(180^{\circ}\right)}{5}=108^{\circ}
$$

find complement of $\alpha=72^{\circ}$.

$$
\text { Comp. }=90^{\circ}-72^{\circ}=18^{\circ}
$$

find supplement of $\alpha=\frac{3 \pi}{7}$.

$$
\text { Suppl. }=\pi-\frac{3 \pi}{7}=\frac{7 \pi}{7}-\frac{3 \pi}{7}=\frac{4 \pi}{7}
$$

1) Draw a Sector with central angle of 120° and radius 6 m .

2) find its are length

$$
\begin{gathered}
S=r \theta=6 \cdot \frac{2 \pi}{3}=4 \pi \mathrm{~m} \\
l_{>120^{\circ}}=2\left(60^{\circ}\right)=2 \cdot \frac{\pi}{3}
\end{gathered}
$$

3) find its area.

$$
A=\frac{1}{2} r^{2} \theta=\frac{1}{2} \cdot 6^{2} \cdot \frac{2 \pi}{3}=12 \pi \mathrm{~m}^{2}
$$

$$
\tan \alpha=-\frac{\sqrt{5}}{10}
$$

1) find $\tan (-\alpha)$

$$
\tan (-\alpha)=-\tan \alpha=-\left(\frac{-\sqrt{5}}{10}\right)=\frac{\sqrt{5}}{10}
$$

2) Find $\cot \alpha=-\frac{10}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=-\frac{10 \sqrt{5}}{5}=-2 \sqrt{5}$
3) Discuss what quadrants can α belong to.

$$
\tan \alpha=-\#<0
$$

QII or QIV

$$
\begin{aligned}
& \text { Simplify } \begin{aligned}
& \frac{\sec \theta \cdot \cot \theta}{\csc \theta}=\frac{\frac{1}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin \theta}} \\
&=\frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta}}=1 \\
& \text { Verify } \quad \frac{\cot \theta}{\csc \theta}=\cos \theta \frac{\cos \theta}{\sin \theta} \\
& \frac{\cot \theta}{\csc \theta}=\frac{\sin \theta \cdot \frac{\cos \theta}{\sin \theta}}{\sin \theta} \cdot \frac{1}{\sin \theta} \frac{\cos \theta}{1}=\cos \theta
\end{aligned}
\end{aligned}
$$

A boat is traveling on a bearing N50 E for 240 miles. How many miles is the boat from east line at this time? Drawing Required

$$
\begin{aligned}
\sin 40^{\circ} & =\frac{d}{240} \\
d & =240 \sin 40^{\circ} \\
& =154.269 \\
& \approx 154 \text { miles }
\end{aligned}
$$

A boat travels 25 miles in the direction of $N 42^{\circ} \mathrm{E}$. then it goes 18 miles in the direction of $S 48^{\circ} \mathrm{E}$.

1) How far is the boat now from the harbor?
2) what is the bearing of the boat now from the harbor? Drawing required.

$$
\begin{aligned}
d^{2} & =25^{2}+18^{2} \\
& =949 \quad d \approx 30.805 \ldots
\end{aligned}
$$

$N 78^{\circ} E$
$\tan \alpha=\frac{18}{25}$
$d \approx 31$ miles
$\tan \alpha=.72 \quad \alpha=\tan ^{-1}(.72)$

$$
42^{\circ}+36^{\circ}=78^{\circ}
$$

$$
\alpha \approx 36^{\circ}
$$

A boat travels for 100 miles in the bearing of 100°. Then it goes 50 miles due east.

How far is the boat from the harbor. Drawing required.

SAS \Rightarrow Law of Cosines

$$
\begin{aligned}
d^{2} & =100^{2}+50^{2}-2(100)(50) \cos 170^{\circ} \\
& =22348.07753 \quad d=\sqrt{22348.07753} \quad d=149.492: \\
& d \approx 149 \text { miles }
\end{aligned}
$$

A ship travels $S 12^{\circ} \mathrm{E}$ for 68 miles.
It changes direction and travels $S 60^{\circ} \mathrm{E}$ for 110 miles. How far is the ship from the harbor? Drawing required.

$$
\begin{gathered}
d^{2}=68^{2}+110^{2}-2(68)(110) \cdot \cos 132^{\circ} \\
d \approx 164 \text { miles }
\end{gathered}
$$

Consider a river that runs North and South. A ship is anchored off a straight shoreline.

from two observation points
 18 miles apart on the Shore, bearings of the ship are $N 31^{\circ} \mathrm{E}$ and $S 53^{\circ} \mathrm{E}$.
find distance from the ship to both observation points.

$$
\frac{\sin 53^{\prime}}{d_{1}} \frac{\sin 31^{\circ}}{d_{2}}=\frac{\sin 96^{\circ}}{18}
$$

$$
\frac{\sin 53^{\circ}}{d_{1}}=\frac{\sin 96^{\circ}}{18} \Rightarrow d_{1}=\frac{18 \sin 53^{\circ}}{\sin 96^{\circ}}
$$

do Similar way $\Rightarrow d_{2} \approx$ miles $d_{1} \approx 14$ miles
from Algebra
If You drive 60 mph for 4 hrs ,

Total distance $4(60)=240$

$$
\text { Linear Speed }=\frac{\text { How far You go }}{\text { How long it takes }}
$$ miles

$$
r=\frac{d}{t} \Rightarrow d=r \cdot t
$$

Rate

Suppose an object moves along a circle, we need to find linear velocity Linear velocity $=\frac{\text { How far along the circle }}{\text { How long it takes }}$

$$
v=\frac{s}{t}
$$

Ex: It takes 20 mins for an object to travel 5 cm . on a circle
Linear velocity $\begin{aligned} V=\frac{S}{t} & =\frac{5 \mathrm{~cm}}{20 \mathrm{~min}} \\ & =.25 \mathrm{~cm} / \mathrm{min} .\end{aligned}$
find a linear velocity for an object to travel 10 cm along a circle in 5 min .

$$
V=\frac{S}{t}=\frac{10 \mathrm{~cm}}{5 \mathrm{~min}}=2 \mathrm{~cm} / \mathrm{min}
$$

Angular velocity
ω

$$
\omega_{\text {omega }}=\frac{\theta}{t}
$$

omega

$$
\text { Angular velocity }=\frac{\text { How much angle }}{\text { How long it take }}
$$

Angle must be in radians Ex: Point P travels $\frac{3 \pi}{4}$ in 3 minutes. find angular velocity

$$
\omega=\frac{\theta}{t}=\frac{\frac{3 \pi}{4}}{3}=\pi / 4 \mathrm{Rad} . / \mathrm{min} .
$$

Point p travels 150° in 10 Seconds.
find its angular velocity.

What about Per min?

$$
\frac{\pi \operatorname{Rad} .}{12 \operatorname{Sect}} \cdot \frac{5}{60 \sec } 1 \mathrm{Min} .5 \pi \mathrm{rad} / \mathrm{min} \text {. }
$$

what about Per hour?

$$
\frac{5 \pi \mathrm{Rad}}{1 \mathrm{Min} .} \cdot \frac{60 \mathrm{~min} .}{1 \mathrm{hr}}=300 \pi \mathrm{rad} / \mathrm{hr}
$$

find linear velocity of a point moving along circular motion if it travels 6 cm in 2 Seconds.

$$
v=\frac{S}{t}=\frac{6 \mathrm{~cm}}{2 \mathrm{Sec} .}=3 \mathrm{~cm} / \mathrm{sec} .
$$

what about $\mathrm{m} / \mathrm{sec}$.?

$$
\frac{3 \mathrm{~cm}}{1 \mathrm{Sec}} \cdot \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=\frac{3 \mathrm{~m}}{100 \mathrm{sec} .}
$$

what about $\mathrm{m} / \mathrm{min}$?

$$
\frac{3 \mathrm{~m}}{\substack{\operatorname{xo\phi } \operatorname{ser} .}} \cdot \frac{36 \phi \sec .}{1 \text { min. }}=\frac{9 \text { meters }}{5 \text { minutes }}
$$

find the distance covered with $V=75 \mathrm{mph}$ in 15 Seconds.

15 Seconds=

$$
\begin{aligned}
V=\frac{S}{t} \Rightarrow S & =v t \quad 15 \text { Seconds } \cdot \frac{1 \text { hr }}{3600 \text { Seconds }} \\
& =75 \cdot \frac{15}{3600} \\
& =.3125 \text { miles }
\end{aligned}
$$

find angular velocity for $\theta=24 \pi$ in 2.4 hrs.

$$
\omega=\frac{\theta}{t}=\frac{24 \pi}{2.4}=10 \pi \mathrm{Rad} / \mathrm{hr}
$$

Find θ if $\omega=10 \mathrm{Rad} / \mathrm{sec}, r=6 \mathrm{ft}, t=2 \mathrm{~min}$.

$$
\begin{aligned}
w=\frac{\theta}{t} \Rightarrow \theta & =w \cdot t \quad \begin{array}{l}
t=120 \\
\mathrm{Sec} .
\end{array} \\
& =10 \cdot 120=1200 \text { Radians. }
\end{aligned}
$$

find $S \quad S=r \theta=6 \cdot 1200=17200 \mathrm{ft}$

$$
\begin{aligned}
& \checkmark S=r \theta \longrightarrow \text { Divide by } r \\
& \checkmark=\frac{S}{t} \quad \frac{S}{r}=\frac{r \theta}{r} \\
& \sqrt{ } \omega=\frac{\theta^{s}}{t} \quad \frac{s}{r} \quad \frac{s}{r}=\theta \\
& \omega=\frac{\frac{s}{r}}{t}=\frac{s}{r t}=\frac{1}{r} \cdot \frac{S}{t}=\frac{1}{r} \cdot V \\
& \omega=\frac{V}{r} \Leftrightarrow V=r w
\end{aligned}
$$

Find v if $r=2$ inches, and $\omega=5 \mathrm{rad} . / \mathrm{sec}$.

$$
\begin{aligned}
V & =r \cdot w \\
& =2 \cdot 5=10 \mathrm{in} / \mathrm{sec} .
\end{aligned}
$$

find w when $r=3 \mathrm{~cm}^{\sqrt{c}}$ and $v=15 \mathrm{~cm} / \mathrm{sec}$.

$$
\omega=\frac{v}{r}=\frac{15}{3}=5 \mathrm{Rad} . / \mathrm{sec}
$$

